Denne klumme er et debatindlæg og er alene udtryk for skribenternes synspunkter.
For flere virksomheder er det svært at få fart i eksekveringen af dataprojekter. Der er ganske enkelt for meget på spil, som indirekte modarbejder de aktiviteter, som skal gennemføres i udviklingen af et dataprojekt.
Uafhængigt af virksomheders branche og dataprojekternes formål er der særligt tre udfordringer, som virksomheder slås med. De første to udfordringer er meget synlige i projektet og kan også løses relativt enkelt.
Den tredje udfordring kan derimod ikke løses af projektteamet. Den kræver en optrevling af de traditionelle organisatoriske masker, så data og kompetencer ikke kun i teorien, men også i praksis bliver tilgængelige for organisationen.
De funktionelle grænser for data og kompetencer skal fjernes.
Udfordring 1: Data science-arbejdet begynder, inden opgaven er fuldt forstået
En typisk situation er, at ivrigheden er stor for at komme i gang med at eksekvere dataprojektet.
Opmærksomheden rettes oftest først mod data science-arbejdet, den tekniske platform og hvordan resultaterne skal præsenteres. Som resultat kommer dataprojektet på et sidespor og væk fra det, som bør være udgangspunktet.
Projektteamet skal først og fremmest have en klar forståelse for formålet med opgaven.
Vær derfor krystalklar, når det kommer til, hvilke spørgsmål data skal besvare, hvilket formål svarene skal understøtte, og de situationer svarene skal anvendes til.
Det kræver ofte en solid indsats, fordi projektteamet har deltagere fra forskellige fagområder med forskellige kompetencer og indsigt, og derfor er deres udgangspunkt og forståelse af en opgave sjældent den samme.
Udfordring 2: Datagrundlaget for projektet er tvivlsomt
En anden typisk udfordring er, at projektet arbejder for snævert i sit valg af datagrundlag.
Oftest anvender man kun data fra eget fagområde. Derfor konkluderer man hurtigt, at spørgsmålene ikke kan besvares med data analytics.
Hvis man drager denne konklusion uden fuldt ud at have foretaget de nødvendige dataanalytiske overvejelser, taber man nye muligheder på gulvet.
Det er nødvendigt at verificere, om de nødvendige data er til stede, og om de kommer i spil på den rigtige måde i søgen efter at besvare de stillede spørgsmål.
Det skal ske med udgangspunkt i data science og statistisk metode. Derudover bør projektet overveje, om der er andre og bedre data, der skal indgå i analysen. Også selvom de ikke måtte være tilgængelige for virksomheden lige nu.
Udfordring 3: Organisatorisk rigiditet forsinker dataprojekter
Organisatorisk er flere virksomheder udfordret på den manglende tradition for at dele og samarbejde på tværs af funktionelle områder, eksempelvis afdelinger eller selskaber.
Dette er bl.a. en naturlig afledning af en performancekultur og KPI’ere, som er afgrænset til det, man bidrager med til eget funktionsområde.
Det rammer dataprojekter ekstra hårdt, fordi data ikke har funktionelle grænser.
De fleste data analytics-projekter har brug for data og interne ressourcer med viden om data fra andre funktionelle områder, end der hvor dataprojektet er forankret. Men der er ofte en tilbageholdenhed i organisationen med at bidrage til andres dataprojekter.
Det forsinker fremdriften i dataprojektet væsentligt, og i værste fald fortsætter dataprojektet uden de relevante ressourcer med risiko for en dårligere og fordyrende projektimplementering.
Selvom topledelsen etablerer strategiprojekter, og der eksisterer en generel forståelse for virksomhedens overordnede prioriteringer, varetages eksekveringen på det operationelle niveau, hvor dagligdagens nærværende KPI-drevne prioriteringer får fokus i praksis.
Det ligger ikke lige for at frigive en af sine kritiske ressourcer til naboens projekt, eller at dele sine kritiske data med andre, hvis dataprojektet ikke bidrager til at indfri ens egne mål i egen afdeling, eller man som medarbejder ikke belønnes for leverancer uden for sin afdeling.
Den organisatoriske rigiditet skal løsnes - både strukturelt og individuelt.
På strukturelt niveau er det nødvendigt at etablere andre måder at opgøre performance på, så tværfagligt samarbejde i højere grad lønner sig - for afdelingslederen og medarbejderen.
På det individuelle niveau består udfordringen yderligere i, at kun de færreste i en organisation trives med hyppigt omskiftelige arbejdsopgaver.
Sigtbarheden for, hvad man fremadrettet kommer til at beskæftige sig med, er kort. Derfor skal der være en højere grad af tryghed for, at man som medarbejder belønnes for sin indsats til virksomheden, også når det er inden for et andet funktionsområde, end der hvor man er ansat.
Klummer er læsernes platform på Computerworld til at fortælle de bedste historier, og samtidig er det vores meget populære og meget læste forum for videndeling.
Har du en god historie eller har du specialviden, som du synes trænger til at blive delt?
Læs vores klumme-guidelines og send os din tekst, så kontakter vi dig - måske bliver du en del af vores hurtigt voksende korps af klummeskribenter.